Electrophilic Addition Reactions - Adding XY Across Unsaturated Carbon-Carbon Bonds

This page summarizes the main classes of chemical transformations. Having studied the process of elimination, we are now set to examine the reverse reaction - addition of the elements “XY” across carbon-carbon multiple bonds.

1) Acid-Base - hydrogen swap

\[\begin{array}{ccc}
\text{acid} & \text{base} & \text{acid} \\
\text{X} & \text{Y} & \text{X} \\
\text{Y} & \text{H} & \text{H} \\
\end{array} \]

2 & 3) Oxidation & Reduction
change in the number of C-H bonds in relation to the number of C-X bonds

4) Substitution - replace C’s substituent (-X) with another (-Y), neither being -H

\[\begin{array}{ccc}
\text{X} & \text{C} & \text{Y} \\
\text{Y} & \text{C} & \text{X} \\
\end{array} \]

5) Elimination - loss of XY elements with concomitant pi bond formation

6) Addition - gain of XY elements with concomitant loss of pi bond

\[\begin{array}{ccc}
\text{X} & \text{Y} & \text{Z} \\
\text{Y} & \text{X} & \text{C} \\
\end{array} \]

7) Rearrangement - isomerization process (no atoms lost or gained); results in new bonding connectivity (one of many examples shown as there is no generic representation).

R stands for a generic "residue"
Examples of Addition Reactions to Carbon-Carbon Double Bonds

\[
\begin{array}{c}
\text{CH}_3\text{C}\text{H}_2\text{C} + \text{H–Br}^+ \rightarrow \text{CH}_3\text{C}\text{H}_2\text{C}^+ \\
\text{H}_2\text{C} = \text{CHCH}_3 + \text{H}_2\text{O} \xrightleftharpoons[\text{H}^+]{\text{H}^+} \text{H}_2\text{C} - \text{C} - \text{CH}_3 \\
\text{Br} - \text{Br}^+ \xrightarrow{\text{CH}_2\text{Cl}_2} \text{H} \text{C} - \text{C} - \text{CH}_3 \\
\text{Cl} - \text{Cl}^+ \xrightarrow{\text{H}_2\text{O}} \text{H} \text{C} - \text{C} - \text{CH}_3 + \text{HCl}
\end{array}
\]
Addition Mechanisms Require a New Elementary Step: Association of an Electrophile with a π-bond $[A_E]$

E^+ is the electrophile

This symbol means an electrophile association with a π-bond

$[A_E]$ involves a $\pi \rightarrow a$ σ-type interaction

Curved Arrows Imply the Frontier Orbitals

Curved arrows indicate the HOMO-LUMO pair (Frontier Orbitals) involved in an elementary step. For $[A_E]$ the tail of the arrow implies the filled orbital (HOMO) is an electron pair in a pi-bond. The head of the arrow points between one carbon atom of the π-bond and the E^+ suggesting that an atom-centered empty orbital (LUMO, a) accepts the electron pair with σ-type orbital interaction (note: the HOMO for $[A_E]$ will always be π but the LUMO will vary according to the specific E^+ involved).

<table>
<thead>
<tr>
<th></th>
<th>σ^*</th>
<th>a</th>
<th>π^*</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ</td>
<td>$\sigma \rightarrow \sigma^*$</td>
<td>$\sigma \rightarrow a$</td>
<td>$\sigma \rightarrow \pi^*$</td>
</tr>
<tr>
<td>η</td>
<td>$\eta \rightarrow \sigma^*$</td>
<td>$\eta \rightarrow a$</td>
<td>$\eta \rightarrow \pi^*$</td>
</tr>
<tr>
<td>π</td>
<td>$\pi \rightarrow \sigma^*$</td>
<td>$\pi \rightarrow a$</td>
<td>$\pi \rightarrow \pi^*$</td>
</tr>
</tbody>
</table>