WORKSHEET: ENTROPY - SOLUTIONS

Entropy Changes

1. Entropy is a thermodynamic function that measures randomness or disorder.

2. Spontaneity refers to a process that happens without any outside intervention. It does not say anything about how fast a reaction will occur.

3. The second law of thermodynamics states that in any spontaneous process the entropy of the universe increases.

4. For some of these reactions the sign of ΔS can be estimated easily. Others require more careful consideration or even calculation.

a) The volume in this reaction increases greatly, because 1 mole of gas is formed. This makes the products more disordered than the reactants. Therefore, the ΔS is (+).

b) The volume in this reaction decreases greatly because the number of moles of gas decreases from 3 to 0. This ΔS is (-).

c) Although it is harder to guess the sign of ΔS, because there is no significant volume change, one would assume that ΔS increases, because the NaCl dissociates into ions the products are more disordered than the reactants. To be sure one could calculate ΔS using the values in the syllabus appendix

$$\Delta S = [(55.2 \text{ J/mol}\cdot\text{K}) + (60.2 \text{ J/mol}\cdot\text{K}) + (69.94 \text{ J/mol}\cdot\text{K})] - [(72.4 \text{ J/mol}\cdot\text{K}) + (69.94 \text{ J/mol}\cdot\text{K})]$$

$$= 43 \text{ J/mol}\cdot\text{K}$$

d) Again the volume does not change significantly. The easiest way to tell is to calculate ΔS using the table in your syllabus.

$$\Delta S = [(222.95 \text{ J/mol}\cdot\text{K}) + (130.59 \text{ J/mol}\cdot\text{K})] - [2(186.68)\cdot\text{K}]$$

$$= -19.82 \text{ J/mol}\cdot\text{K} \quad \text{so } \Delta S \text{ (-)}$$

e) Same as d) - calculate ΔS to be sure.

$$\Delta S = [2(210.62 \text{ J/mol}\cdot\text{K})] - [(191.49 \text{ J/mol}\cdot\text{K}) + (205.03)]$$

$$= 24.72 \text{ J/mol}\cdot\text{K} \quad \text{so } \Delta S \text{ (+)}$$

f) Increasing the pressure of a gas decreases the volume which means the molecules will be more ordered thus ΔS is (-).

g) Cooling a gas also decreases the volume of the gas so ΔS is (-).

h) The volume in this reaction increases greatly, because the number of moles of gas increases. This means ΔS is (+).

i) Expanding a gas into a vacuum increases the volume occupied by the gas so ΔS is (+).
Absolute Entropies

5. a) Hg(l), liquid more disorder than solid.
 b) HI, larger molecule, more complex at atomic level
 c) NH₃, more complicated.
 d) C₂H₆, both more complicated and larger.
 e) H₂(g). One mole at one atm has a greater volume than one mole at two atm: more microstates.
 f) NaCl(aq). Mixtures are more disordered.

Entropy Changes for Phase Transitions

6. Warming ice from -273°C (0 K) to 0°C \(\rightarrow \Delta S(+) \) because the molecules begin to move more as T increases.

Ice melting at 0°C \(\rightarrow \Delta S(+) \) because entropy increases as ice melts; phase change from solid to liquid.

Heating of liquid from 0°C to 100°C \(\rightarrow \Delta S(+) \) because the molecules move around more as T increases.

Vaporization of liquid at 100°C \(\rightarrow \Delta S(+) \) because entropy increases as water boils; phase change from liquid to gas.

Heating of gas above 100°C \(\rightarrow \Delta S(+) \) because the molecules move around more as T increases.

The most dramatic changes are at the phase changes from s \(\rightarrow \) l and l \(\rightarrow \) g because the disorder increases much more at these points.

Ice melts spontaneously at temperatures above \(\rightarrow \) 0°C.
Water freezes spontaneously at temperatures below 0°C.
Water boils spontaneously at temperatures above 100°C.
Steam condenses spontaneously at temperatures below 100°C.
7. \(\Delta S_{\text{rev}} = \Delta S_{\text{subt}} + \Delta S \)

for \(-20^\circ\text{C} (253 \text{ K})\)

\[
\Delta S_{\text{subt}} = \frac{-6.03 \times 10^3 \text{ J/mol}}{253 \text{ K}} + 22.1 \text{ J/Kmol} = \underline{1.7 \text{ J/Kmol}}; \text{ melting does not occur spontaneously}
\]

for \(0^\circ\text{C} (273 \text{ K})\)

\[
\Delta S_{\text{subt}} = \frac{-6.03 \times 10^3 \text{ J/mol}}{273 \text{ K}} + 22.1 \text{ J/Kmol} = 0 \text{ J/Kmol}; \text{ equilibrium; melting point}
\]

for \(+20^\circ\text{C} (293 \text{ K})\)

\[
\Delta S_{\text{subt}} = \frac{-6.03 \times 10^3 \text{ J/mol}}{293 \text{ K}} + 22.1 \text{ J/Kmol} = \underline{+1.52 \text{ J/Kmol}}; \text{ melting occurs spontaneously}
\]

Additional problems

8. The third law of thermodynamics states that at 0 K, the entropy of a perfectly crystalline pure substance is zero.

9. \(\Delta S_{\text{rxn}}^\circ = \sum S^\circ (\text{prod}) - \sum S^\circ (\text{react}) \)

\[\Delta G^\circ = \Delta H^\circ - T\Delta S^\circ \text{ if } \Delta G^\circ, \Delta H^\circ \text{ and } T \text{ are known} \]

10. The standard units for entropy are J/K•mol. Standard states are 1 molar solutions or gases at 1 atm pressure.

11. \(\Delta S_{\text{rxn}}^\circ = \sum S^\circ (\text{prod}) - \sum S^\circ (\text{react}) \)

\[
= [2(192.5 \text{ J/mol•K})] - [(191.49) + 3(130.59)]
\]

\[= -198.26 \text{ J/mol•K} \]

This number makes sense. One would expect \(\Delta S^\circ \) for this reaction to be negative because the number of moles of gas decreases in going from reactants to products.

12. \(\Delta S_{\text{universe}} = \Delta S_{\text{subt}} + \Delta S_{\text{sys}} \); the second law states that for a spontaneous process \(\Delta S_{\text{universe}} \) is (+).

13. \(q, \Delta E, \Delta H, \Delta S \)

\[+ + + + \]

14. \(\Delta H = + \text{ endothermic} \)

\(\Delta S = + \text{ increase} \)

15. 13